RDCH 702 Quiz 1 Assigned 5 Sep 12, Due 17 Sep 12 Chart of the nuclides (up to and including page 1-13 of the lecture notes)

Use the chart of the nuclides, the readings on the chart of the nuclides, table of the isotopes, and web links from lecture 1 to answer the following questions.

1. (10 Points)Using the chart of the nuclides find 4 isotopes where the metastable state is longer lived that the ground state.

Examples ar	re below	1	1		- 1
Isotope	Metastable	Ground state	Isotope	Metastable	Ground state
	half life	half life		half life	half life
³⁴ Cl	32.2 minutes	1.53 seconds	¹⁶⁹ Re	16 seconds	8.1 seconds
⁴² Sc	1.03 minutes	682 ms	¹⁷⁷ Lu	160.7 days	6.65 days
⁴⁴ Sc	2.442 days	3.93 hours	¹⁸⁰ Ta	>1.2E15	8.15 hours
				years	
⁵⁰Mn	1.74 minutes	283.2 ms	¹⁸⁴ Re	165 days	38 days
⁵⁴ Co	1.46 minutes	193.2 ms	¹⁸⁶ Re	2E5 years	3.718 days
⁸⁰ Br	4.42 hours	17.66	¹⁹² lr	24e1 years	73.83 days
		minutes			
⁸¹ Se	57.3 minutes	18.5 minutes	¹⁹⁴ lr	171 days	19.3 hours
⁹⁵ Tc	61 days	20.0 hours	¹⁹⁵ Hg	1.73 days	10.53 hours
¹⁰² Rh	3.74 years	207 days	¹⁹⁵ lr	3.9 hours	2.5 hours
¹⁰⁴ Rh	4.36 minutes	42.3 seconds	²⁰⁰ Au	18.7 hours	48.4 minutes
¹⁰⁶ Rh	2.18 hours	29.9 seconds	²¹⁰ Bi	3E6 years	5.01 days
¹⁰⁶ Ag	8.28 d	24.0 m	²¹² Po	45 seconds	0.298
					microseconds
¹⁰⁸ Ag	438 years	2.39 minutes	²²² Ac	63 seconds	5 seconds
¹¹⁰ Ag	249.8 days	24.6 seconds	²⁴² Am	141 years	16.02 hours
¹¹⁴ In	49.51 days	1.198	²⁴⁸ Bk	>9 years	23.7 hours
		minutes			
¹¹⁵ Cd	44.6 days	2.228 days	²⁶⁵ Sg	18 seconds	8 seconds
¹¹⁸ Sb	5 hours	3.6 minutes	_		
¹¹⁹ Te	4.69 days	16.0 hours			
¹²¹ Te	164 days	19.1 days			
¹²¹ Sn	44 years	1.128 days			
¹³¹ Te	1.36 days	25.0 minutes			
¹⁴⁸ Pm	41.3 days	5.37 days			
¹⁶² Ho	1.12 hours	15 minutes	1		
¹⁶⁶ Ho	1200 years	1.118 days	1		

are hel

Name:_____

2. (10 Points) The cross section data generally have two values. As an example the cross section data the absorption of a neutron and emission of a photon for ¹⁴⁷Nd is σ_{γ} =4E2, 2E2

Why are there two values and what is the cross section unit. Define the different types of cross sections presented by the data.

The cross section data is for the thermal neutron and resonance integral for the production of ¹⁴⁸Nd. The resonance integral is the reaction over a large energy range above thermal energy. The data is presented as 4E2, 4E2 in barns, where a barn= 10^{-24} cm². The data represents the following:

¹⁴⁷ Nd(n,γ)X	Thermal cross section (barns)	Resonance Integral (barns)
¹⁴⁸ Nd	4E2	4E2

3. (5 Points) Name 5 elements lighter than uranium that were found during the discovery of fission.

From page 11 in the chart of the nuclides elements found during fission include barium, lanthanum, cerium, molybdenum, rubidium, antimony, and iodine.

 (10 Points) Provide 5 elements that have at least 5 metastable isotopes? Are there any trends in the population of isotopes with metastable states? (consider the number of neutrons and protons)

A partial list includes: Os, Hf, Lu, Ir, Au, Co, Br, Nb, Ce, Se, Y, Rh, Tc, Ag, Ba, Cs, Sb, In, Sn, Te, Rb, Po

Metastable isotopes tend to be heavy and have an unpaired nucleon. The lightest metastable isotopes are ^{24m}Na, ^{26m}Al, ^{34m}Cl, ^{38m}Cl and ^{38m}K, all of which have an odd number of protons and neutrons. Cobalt (Z=27) is the lightest element with at least 5 metastable states. Elements with even Z (i.e., Ge with Z=32) that have at least 5 metastable states manifest the metastable states with odd N. For Ge the metastable isotopes are ^{71m}Ge, ^{75m}Ge, ^{77m}Ge, ^{79m}Ge, and ^{81m}Ge. The generalized trends for metastable isotopes are that they are heavy (Z above 26), and have at least one unpaired nucleon, primarily the proton. Even-even metastable isotopes tend to be populated by beta decay.

A	²³³ U	²³⁵ U	²³⁹ Pu
116	0.013	0.013	0.051
95	6.3	6.5	4.82
72	0.0004	0.000026	0.0001
160	0.0003	0.0003	0.010

5. (10 Points) Provide the cumulative fission yields for the A isobars listed below.

 (15 Points) Plot the ratio of ²³⁵U cumulative fission yield to ²³⁹Pu cumulative fission yield for 90≤A≤105 and 135≤A≤150. (Use plotting software, provide on separate page).

What are the differences between the higher (135 \leq A \leq 150) and lower (90 \leq A \leq 105) A set? What accounts for this difference?

What are the differences between the higher and lower A set? What accounts for this difference?

The ratio of the higher A set is close to 1; there is not a large difference in the cumulative fission product yield for these isotopes for the fission of ²³⁵U and ²³⁹Pu. The main difference in the cumulative fission yields for ²³⁵U and ²³⁹Pu is in the lower area, with a large ratio near 90 and a small ratio above 105.

The similarity in the high A set is driven by the doubly magic ¹³²Sn (Z=50, N=82). This enhanced stability leads a tendency for the formation of isotopes in this region.

7. (15 Points) Describe the cross section data presented for ¹⁹⁷Au.

The cross section data is for the thermal neutron and resonance integral for the production of ^{198m}Au and ¹⁹⁸Au. The resonance integral is the reaction over a large energy range above thermal energy. The data is presented as (0 + 98.7), 155E1 in barns. The data represents the following:

¹⁹⁷ Au(n,γ)X	Thermal cross section	Resonance Integral
^{198m} Au ¹⁹⁸ Au	0 98.7	155E1

8. (10 Points) Provide the main gamma decay energy and the gamma decay intensity for the following isotopes

Isotope	Main gamma decay energy (keV)	Gamma Intensity (%)
⁵⁶ Ni	158.4, 811.8	98.8, 86.0
⁶⁰ Co	1332.5, 1173.2	99.98 <i>,</i> 99.97
¹²⁷ Sb	685.7, 473.6	37, 25.8
¹³⁷ Cs	661.6	85.1
¹⁸³ Re	162.3, 46.5	23.3, 7.97
²⁴¹ Am	59.6	35.9

9. (5 Points) Where was the location of the first man-made reactor?

Stagg field, University of Chicago under the direction of Enrico Fermi

Isotope	Spin	Parity	Half-life
²⁰⁸ Pb	0	+	Stable
¹⁰⁷ Rh	7/2	+	21.7 minutes
⁹⁹ Tc	9/2	+	2.13E5 years
^{148m} Pm	6	-	41.3 days
¹⁶² Dy	0	+	Stable
²⁵⁵ Fm	7/2	+	20.1 hour

10. (10 Points) Provide the spin, parity, and half-life for the isotopes below